
Outline

CS06201a01: Network Computing and Efficient
Algorithms

Distributed Sorting

Xiang-Yang Li and Xiaohua Xu

School of Computer Science and Technology
University of Science and Technology of China (USTC)

September 1, 2021

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 1 / 21



Outline

Model

Definition (sorting)
We choose a graph with n nodes v1, · · · ,vn. Initially, each node stores
a value. After applying a sorting algorithm, node vk stores the k-th
smallest value.

Simple Algorithm
Send to some node v, sorts it locally, redistributes.
With a star topology sorting finishes in O(1) time.

2

7

8

6

3

11

v6

v3

v2

v1

v5

v4
⇒ 11

6

3

2

8

7

v6

v3

v2

v1

v5

v4

Ω(n) time, O(n) messages. Problem?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 2 / 21



Outline

Model

Definition (Node Contention)
In each step of a synchronous algorithm, each node can only send and
receive O(1) messages containing O(1) values, no matter how many
neighbors the node has

2

7

8

6

3

11

v6

v3

v2

v1

v5

v4
⇒ 11

6

3

2

8

7

v6

v3

v2

v1

v5

v4

Complexity to sort star graph? Ω(n) time! How to do it faster?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 3 / 21



Outline

Array

How to sort in an array?

18 12 24 10 13 11 8 34 15

v1 vn

ALGORITHM 4.3: ODD/EVEN SORT(
1: ) Given an array of n nodes (v1, · · · ,vn), each storing a value (not

sorted).
2: repeat
3: Compare and exchange the values at nodes i and i+1, i odd.
4: Compare and exchange the values at nodes i and i+1, i even
5: until done

18 12 24 10 13 11 8 34 15
↔ ↔ ↔ ↔

18 12 24 10 13 11 8 34 15
↔ ↔ ↔ ↔

Correctness?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 4 / 21



Outline

0−1 Sorting Lemma

Lemma (0−1 Sorting Lemma)
If an oblivious comparison-exchange algorithm sorts all inputs of 0’s
and 1’s, then it sorts arbitrary inputs.

Proof.
We prove the opposite direction (does not sort arbitrary inputs ) does
not sort 0’s and 1’s). Assume that there is an input x = x1, · · · ,xn that
is not sorted correctly. Then there is a smallest value k such that the
value at node vk after running the sorting algorithm is strictly larger
than the k-th smallest value x(k). Define an input
xi = 0↔ xi ≤ x(k),xi = 1 else. Whenever the algorithm compares a
pair of 1’s or 0’s, it is not important whether it exchanges the values
or not, so we may simply assume that it does the same as on the input
x. On the other hand, whenever the algorithm exchanges some values
xi = 0 and xj = 1, this means that xi ≤ x(k)< xj. Therefore, in this
case the respective compare-exchange operation will do the same on
both inputs. We conclude that the algorithm will order x∗ the same
way as x, i.e., the output with only 0’s and 1’s will also not be
correct.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 21



Outline

Array

Theorem
Algorithm 4.3 sorts correctly in n steps.

Proof.
Thanks to Lemma 4.4 we only need to consider an array with 0’s and
1’s. Let j1 be the node with the rightmost (highest index) 1. If j1 is odd
(even) it will move in the first (second) step. In any case it will move
right in every following step until it reaches the rightmost node vn.
Let jk be the node with the k-th rightmost 1. We show by induction
that jk is not ”blocked” anymore (constantly moves until it reaches
destination!) after step k. We have already anchored the induction at
k = 1. Since jk−1 moves after step k−1, jk gets a right 0-neighbor for
each step after step k. (For matters of presentation we omitted a
couple of simple details.)

Maybe we can do better by using a different topology?
Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 6 / 21



Outline

Mesh

How to sort in a mesh (aka grid)?

18 12 24 10 13

11 8 34 15 45

53 27 19 1 2

3 31 6 21 16

smallest

largest

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 7 / 21



Outline

Mesh

ALGORITHM 4.6: SHEAR SORT(
1: ) We are given a mesh with m rows and m columns, m even, n =

m2.
2: The sorting algorithm operates in phases, and uses the odd/even

sort algorithm on rows or columns.
3: repeat
4: In the odd phases 1; 3; : : : we sort all the rows, in the even

phases 2; 4; : : : we sort all the columns, such that:
5: Columns are sorted such that the small values move up.
6: Odd rows (1; 3; : : : ;m ) are sorted such that small values move

left.
7: Even rows (2; 4; : : : ;m) are sorted such that small values move

right.
8: until done

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 8 / 21



Outline

Mesh

Theorem
Algorithm 4.6 sorts n values in p n(log n+1) time in snake-like order.

Proof.
Since the algorithm is oblivious, we can use Lemma 4.4. We show
that after a row and a column phase, half of the previously unsorted
rows will be sorted. More formally, let us call a row with only 0’s (or
only 1’s) clean, a row with 0’s and 1’s is dirty. At any stage, the rows
of the mesh can be divided into three regions. In the north we have a
region of all-0 rows, in the south all-1 rows, in the middle a region of
dirty rows. Initially all rows can be dirty. Since neither row nor
column sort will touch already clean rows, we can concentrate on the
dirty rows.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 21



Outline

Mesh (cont’d)

First we run an odd phase. Then, in the even phase, we run a peculiar
column sorter: We group two consecutive dirty rows into pairs. Since
odd and even rows are sorted in opposite directions, two consecutive
dirty rows look as follows:

00000 · · ·11111

11111 · · ·00000

Such a pair can be in one of three states. Either we have more 0’s than
1’s, or more 1’s than 0’s, or an equal number of 0’s and 1’s.
Column-sorting each pair will give us at least one clean row (and two
clean rows if ”‖0‖= ‖1‖”). Then move the cleaned rows north/south
and we will be left with half the dirty rows. At first glance it appears
that we need such a peculiar column sorter. However, any column
sorter sorts the columns in exactly the same way (we are very grateful
to have Lemma 4.4!). All in all we need 2logm = logn phases to
remain only with 1 dirty row in the middle which will be sorted (not
cleaned) with the last row-sort.Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 10 / 21



Outline

rst are called input wires of the comparison network, the second
output wires. Given n values on the input wires, a sorting network
ensures that the values are sorted on the output wires. We will also use
the term width to indicate the number of wires in the sorting network.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 12 / 21



Outline

Remarks

Often we will draw all the wires on n horizontal lines (n being
the ”width” of the network). Comparators are then vertically
connecting two of these lines.

Note that a sorting network is an oblivious comparison-exchange
network. Consequently we can apply Lemma 4.4 throughout this
section.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 12 / 21



Outline

Sorting Networks

Definition (Depth)
The depth of an input wire is 0. The depth of a comparator is the
maximum depth of its input wires plus one. The depth of an output
wire of a comparator is the depth of the comparator. The depth of a
comparison network is the maximum depth (of an output wire).

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 13 / 21



Outline

Bitonic Sequence

Definition (Bitonic Sequence)
A bitonic sequence is a sequence of numbers that first monotonically
increases, and then monotonically decreases, or vice versa.

< 1,4,6,8,3,2 > or < 5,3,2,1,4,8 > are bitonic sequences.

< 9,6,2,3,5,4 > or < 7,4,2,5,9,8 > are not bitonic.

Since we restrict ourselves to 0’s and 1’s (Lemma 4.4), bitonic
sequences have the form 0i1j0k or 1i0j1k for i, j,k ≥ 0.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 14 / 21



Outline

Half Cleaner

ALGORITHM 4.12: HALF CLEARNER(
1: ) A half cleaner is a comparison network of depth 1, where we

compare wire i with wire i+n = 2 for i = 1, · · · ,n/2 (we assume
n to be even).

Lemma
Feeding a bitonic sequence into a half cleaner (Algorithm 4.12), the
half cleaner cleans (makes all-0 or all-1) either the upper or the
lower half of the n wires. The other half is bitonic.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 15 / 21



Outline

Bitonic Sequence Sorter

ALGORITHM 4.14: BITONIC SEQUENCE SORTER(
1: ) A bitonic sequence sorter of width n (n being a power of 2)

consists of a half cleaner of width n, and then two bitonic
sequence sorters of width n=2 each.

2: A bitonic sequence sorter of width 1 is empty.

Lemma
A bitonic sequence sorter (Algorithm 4.14) of width n sorts bitonic
sequences. It has depth logn.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 16 / 21



Outline

Merging Networks

ALGORITHM 4.16: MERGING NETWORK(
1: ) A merging network of width n is a merger of width n followed

by two bitonic sequence sorters of width n = 2. A merger is a
depth-one network where we compare wire i with wire n− i+1,
for i = 1, · · · ,n/2.

If two sorted sub-sequences are input to Merger, then output two
sub-sequences: one clean, other bitonic.

Note that a merging network is a bitonic sequence sorter where
we replace the (first) half-cleaner by a merger.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 17 / 21



Outline

Merging Networks

Lemma
A merging network of width n (Algorithm 4.16) merges two sorted
input sequences of length n=2 each into one sorted sequence of length
n.

Proof.
We have two sorted input sequences. Essentially, a merger does to
two sorted sequences what a half cleaner does to a bitonic sequence,
since the lower part of the input is reversed. In other words, we can
use the same argument as in Theorem 4.7 and Lemma 4.13: Again,
after the merger step either the upper or the lower half is clean, the
other is bitonic. The bitonic sequence sorters complete sorting.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 18 / 21



Outline

Batcher’s ”Bitonic” Sorting Network

ALGORITHM 4.18: BATCHER’S ”BITONIC” SORTING NETWORK(
1: ) A batcher sorting network of width n consists of two batcher

sorting networks of width n = 2 followed by a merging network
of width n. (See Figure 4.19.)

2: A batcher sorting network of width 1 is empty.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 19 / 21



Outline

Batcher’s ”Bitonic” Sorting Network

Theorem
A sorting network (Algorithm 4.18) sorts an arbitrary sequence of n
values. It has depth O(log2 n).

Proof.
Correctness is immediate: at recursive stage k(k = 1, · · · , logn), we
merge 2k) sorted sequences into 2k−1 sorted sequences. The depth
d(n) of the sorting network of level n is the depth of a sorting network
of level n = 2 plus the depth m(n) of a merging network with width n.
The depth of a sorter of level 1 is 0 since the sorter is empty. Since a
merging network of width n has the same depth as a bitonic sequence
sorter of width n, we know by Lemma 4.15 that m(n) = logn. This
gives a recursive formula for d(n) which solves to
d(n) = 1/2log2 n+1/2logn.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 20 / 21



Outline

References

Shearsort for meshes with higher dimension:
Isaac D. Scherson and Sandeep Sen. Parallel sorting in two
dimensional VLSI models of computation. Computers, IEEE
Transactions on, 38(2):238-249, Feb 1989.

Asymptotically optimal algorithms for grid network:
Clark David Thompson and Hsiang Tsung Kung. Sorting on a
meshconnected parallel computer. Commun. ACM,
20(4):263-271, April 1977.
Claus Peter Schnorr and Adi Shamir. An optimal sorting
algorithm for mesh connected computers. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing,
STOC 86, pages 255-263, New York, NY, USA, 1986. ACM.

A sorting network with asymptotically optimal depth O(log n)
(but with a large constant hidden in the big-O):

Miklos Ajtai, Janos Komlos, and Endre Szemeredi. An O(n log n)
sorting network. In Proceedings of the fifteenth annual ACM
symposium on Theory of computing, STOC 83, pages 1-9, New
York, NY, USA, 1983. ACM.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 21 / 21


